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Abstract. The Dirichlet-to-Neumann (DtN) Finite Element Method is a combined nu-
merical-analytic method for boundary value problems in infinite domains. This paper
presents a two-dimensional DtN formulation to solve radiation problems in time-harmonic
vibro-acoustics systems. The computational aspect related to the DtN Finite Element code
implementations are discussed. In this work, the DtN Mapping is applied to solve a coupled
fluid-structure problem. The method is used to analyse the acoustic radiation of the free-
free plate in infinite air medium. The numerical simulations are in good agreement with
the experimental results.
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1. INTRODUCTION

The phenomena of interaction between a structure and a fluid are encountered in
several domains, for example, in the noise radiated from vehicles, such as: car, buses, and
trucks. The simulation of the acoustic behaviour of these systems, it can be useful, when
used in the initial stages of the project, to avoid the vibro-acoustic coupling and problems
of sound pollution Zavala & Pavanello (1998b).

The Finite Element Method is one of the most versatile methods to model Vibro-
acoustic systems. This method has advantages such as: general codes are available, the
coupled problems are solved in the direct form and a simple and intuitive simulation. Seve-
ral approaches using finite element method were developed to model unbounded acoustic
domains. These methods could be divided in two categories: special boundary conditions
methods and infinite element techniques.

In late 1970’s, Bettes and Zienkiewicz has developed the theory of infinite elements
Bettes (1992). In this technique a layer of infinite elements is placed around a discretized
finite domain with finite elements. Zienkiewicz 3 presented a summary of infinite elements.



In order to solve unbounded domains problems Keller & Givolli (1989) developed
a so-called Dirichlet-to-Neumann boundary condition. This approach is an exact and
non-reflective method. The DtN Mapping is a non-local boundary condition derived
from the exact analytical solution. Givoli (1992) makes an overview about this kind of
method and use DtN Mapping in other problems such as aeroelasticity, non-linearity,
Laplace Problems, and others. Givoli (1992) presents a comparison of the DtN approach
with other special boundary conditions methods, showing the advantages of the DtN
Mapping. Zavala & Pavanello (1998b) and Zavala (1999) presents one application of
the numerical expansion of the results to the exterior region (not discretized) using the
analytical solution.

This paper is concerned with solving the coupled radiation problem, in the low
frequency domain, by using the finite element method and the DtN boundary condition.
This paper is organised as follows. In section 2, the governing partial differential equations
for time-harmonic structural acoustic with radiation boundary condition are summarised
and the DtN formulation is introduced. In section 3, the semi-discretized finite element
form of the problem is presented. In section 4, the computational aspects of the method
are briefly discussed. In section 5, the example of fluid-structure coupling in unbounded
fluid medium is solved. Some conclusions are presented in section 6.

2. THE RADIATION PROBLEM

The governing equation of motion including the structural dynamics, the acoustics,
and their coupling, are recalled. The acoustic radiation problem, Fig. 1, can be repre-
sented by the Helmholtz equation in velocity potential, ψ, in an infinite domain, R, with
internal boundary, Γ, where Γ = Γg ∪ Γh, as follow (Keller & Givoli 1989):

Figura 1: Infinite Fluid Domain with Internal Boundary

∇2ψ + k2ψ + f = 0 in R (1)

ψ = g in Γg (2)

ψ,n = ikh in Γh (3)

lim
r→∞

r(d−1)/2(ψ,r − ikψ) = 0 (4)

where∇2 is the Laplacian operator; k is the wave number (k = ω/c); f is the contribution
of acoustic sources; ψ,n is the differentiation in exterior normal direction ~n; i is the imag-
inary unit; g and h are known functions in Dirichlet and Neumann boundary conditions



respectively; r is the distance from de origin and d is the spatial dimension. Boundary
Conditions like Free Boundaries, Rigid Walls, Fluid-structure interface and others can be
represented by Eq. (2,3). Equation (4) is the Sommerfeld Radiation Boundary Condition,
and represents the infinite external fluid medium. The solution of the problem Eq. (1 -
4) can be found analytically for some simple and classic problems with regular geometry,
but the analytical solutions for more complex geometry are practically impossible.

2.1. The infinite fluid medium approach with DtN mapping

To obtain the approximate solution of the problem Eq. (1 - 4), an equivalent problem
consisting of to separated domains by an artificial boundary can be resolved (Keller &
Givoli 1989). The system is divided in an infinite external domain, D, where the solution
of the homogenous Helmholtz Equation is required, and an internal finite domain, Ω,
where the solution of the non-homogenous Helmholtz equation is required. A simple
representation of the problem can be seen in the Fig. 2.

Figura 2: Equivalent Problem

The Dirichlet problem defined in D, can be represented by:

∇2ψ + k2ψ = 0 in D (5)

ψ = ψ(R, θ) in ∂BR (6)

lim
r→∞

r(d−1)/2(ψ,r − ikψ) = 0 (7)

In two dimensions (d = 2), the artificial boundary is a circle with radius R, and the
solution of Eq.(5 - 7) is as follows (Morse & Fesbach 1953):

ψ(r, θ) =
1

π

∞∑
n=0

′ ∫ 2π

0

H(1)
n (kr)

H
(1)
n (kR)

cosn(θ − θH)ψ(R, θH)dθH (8)

where r and θ are the radius and the angle of an exterior point; n is the number of
harmonic terms of the solution; H(1)

n is the Hankel function of first type; θH is the angle
used to the integration in the artificial boundary. The prime after the sum indicates that
a factor of 1/2 multiplies the term with n = 0.



On ∂BR the following boundary condition can be imposed

ψ,r = Mψ in ∂BR (9)

where M is an operator called the Dirichelt to Neumann (DtN) map. Differentiating the
equation (8) with respect to r in the artificial boundary ∂BR, yields

ψ,r(R, θ) =
∞∑
n=0

′
k

π

H(1)′
n (kR)

H
(1)
n (kR)

∫ 2π

0
cosn(θ − θH)ψ(R, θH)dθH (10)

where the prime symbols after a function means differentiation with respect to its argu-
ment. Thus, the DtN Operator could be expressed as:

Mψ =
∞∑
n=0

′

αn

∫ 2π

0
cosn(θ − θH)ψ(R, θH)dθH (11)

where

αn = −k
π

H(1)′
n (kR)

H
(1)
n (kR)

(12)

Finally, the DtN Problem can be represented as:

∇2ψ + k2ψ + f = 0 in Ω (13)

ψ = g in Γg (14)

ψ,n = ikh in Γh (15)

ψ,n = −Mψ in ∂BR (16)

For the finite domain Ω, the Finite Element Method can be applied directly (Keller
& Givoli 1989), and the classical fluid structure model can be used. For a continuous
solid, the elasticity relationships, without dissipative terms are:

σij,j(u)− ρsüi = 0 in Ωs (17)

where σij is the stress tensor; ρs is the mass structural density and ui are the compo-
nents of the structural displacements. The local coupling conditions at the fluid-structure
interfaces are:

ψ̇,n = u̇n (18)

σij(u)ni = −ρf ψ̇,n (19)

Equations (13) to (19) are the governing equations of the coupled radiation problem.



3. FEM APROXIMATIONS OF DtN MAPPING

The DtN Mapping is a natural boundary condition which can be included in the
weak form of the fluid problem as follows (Zienkiewicz & Taylor 1991):

∫
Γ
w
∂ψ

∂n
dΓ =

∫
Γg
w
∂ψ

∂n
dΓ +

∫
Γh

w
∂ψ

∂n
dΓ +

∫
∂BR

w
∂ψ

∂n
dΓ (20)

where w is the weight function. Using a classical FEM approximation, combining Eq.(16)
and Eq.(20), the integral equation in ∂BR becomes

∫
∂BR

w
∂ψ

∂n
dΓ = −

∫
∂BR

wMψdΓ (21)

Using Galerkin method and a classical finite element approximation, the matricial
form of the DtN kernel can be expressed by:

−
[∫
∂BR

NiMNjdΓ
]
ψj = [D]{ψ∂BR} (22)

To calculate the matrix [D], considering the two-dimensional problem in infinite
medium, the expression of the DtN operator M can be rewritten for the artificial circular
boundary, Eq. (11), with variables in separately arrange,

Mψ =
∞∑
n=0

′
αn

∫ 2π

0
(cosnθ cosnθH + sen nθ sen nθH)ψ(R, θH)dθH (23)

or,

Mψ =
∞∑
n=0

′
αn

(
cosnθ

∫ 2π

0
cosnθHψ(R, θH)dθH + sen nθ

∫ 2π

0
sen nθHψ(R, θH)dθH

)
(24)

Now, substituting the expression of the DtN operator in Eq.(22),

Dij = −
∞∑
n=0

′
αn

[(∫
∂BR

Ni cosnθ dΓ
) (∫ 2π

0
Nj cosnθH dθH

)

+
(∫

∂BR
Ni sen nθ dΓ

) (∫ 2π

0
Nj sen nθH dθH

)]
(25)

To obtain the matrix [D], 2 × nB integrals have to be evaluated for each term of the
sequence in n, where nB is the number of nodes in the artificial boundary. The influences
of the radius of the artificial boundary, the number of terms in the DtN Kernel evaluation,
and the mesh refinement required for good spatial and frequency resolution, are discussed
in Zavala(1999), Zavala & Pavanello (1998a) and Givoli(1992).



4. COMPUTATIONAL ASPECTS IN THE INCLUSION OF THE DtN
MAPPING

The discretized equation of the acoustic system in infinite fluid medium can repre-
sented as:

[S]{ψ̈}+ ([H] + [D]) {ψ} = {F} (26)

where [S] is the inertial matrix; [H] is the volumetric matrix; {F} is the acoustic sources
vector; {ψ} is the nodal variables vector, and ¨ means the second time differentiation.
The solution of the equation (25) is non-local, and the evaluation of the variable at each
position depends on all others variables in the artificial boundary, ∂BR. This results in
coupling all variables in the boundary. The inclusion of all terms of the DtN Mapping is
directly done in the global matrix of the system. This spoils the sparseness of resulting
matrix [H] + [D]. However a bandwidth and profile reduction method can be used to re-
establish a sparse finite element matrix.

(a) (b)

Figura 3: (a) Two-dimensional model mesh, (b) excitation point.

The computational cost associated to the evaluation of the Bessel functions is small.
This functions are just evaluated one time for each kR, and a small number of harmonic
terms n is required. The biggest cost in DtN Kernel calculations is associated to evaluation
of the integrals of the trigonometric functions. This cost is minimised if the integrals are
obtained explicitly, Zavala (1999).

Harari & Hughes (1992), shown that the computational costs associated to the
resolution of acoustic problems in infinite fluid medium using the FEM with DtN Mapping
compared to the Boundary Element Method (BEM) have a general advantage.

5. EXAMPLE OF FLUID-STRUCTURE COUPLING IN INFINITE FLUID
MEDIUM

To illustrate the ability of the DtN Method for a real system, the radiation problem
of a free-free plate is dealt with.



(a) (b)

Figura 4: First Coupled Operational Mode . (a) Real Part (b) Imaginary Part.

The plate dimensions are 672 × 217 × 3, 2 mm. The plate material is aluminium,
with density of 2700 Kg/m3, and elastic modulus of 7, 1× 1010 N/m.

A two-dimensional model consisting of 27 Euler-Bernouilli beam elements, with
geometric properties of: area of 0, 0032 m2, and Moment of Inertia of 2, 7307 × 10−9 m4

is used to model the central section of the plate. The fluid domain were discretized with
518 quadrilateral bi-linear elements, with properties of (air): density of 1, 2 Kg/m3; and
sound velocity of 342 m/s.

(a) (b)

Figura 5: Second Coupled Operational Mode. (a) Real Part (b) Imaginary Part.

The adopted finite element mesh, with artificial boundary radius of R = 0.50 m,
can be seen in Figure 3. The excitation points are shows in Figure 3. The results are
obtained using n = 10 DtN kernel terms.

We present in Figures 4 to 6 the theoretical fluid and structural operational mode
for the first three flexural modes of the structure, where the amplitudes of the struc-
ture displacement were augmented to better visualisation of the shapes. The pressure
response results are in Pa (N/m2). The frequencies of the operational modes are 37.5Hz,



(a) (b)

Figura 6: Third Coupled Operational Mode. (a) Real Part (b) Imaginary Part.

104.3Hzand 205.5Hz.
The measurements of the pressure field were done in an anechoic field. The mea-

surement points, in a total of 28, are distant 2 cm of the plate, in the direction of the
longitudinal central line, equally spaced. The complete description of the experiment can
be found in COLINAS (1999).

The numerical and experimental frequency response functions between the pres-
sure and the excitation force were extracted. The comparison of the experimental and
numerical results can be seen in Figures 7 to 9.
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(a) (b)

Figura 7: FRF Comparison. (a) x = 0.0 m (b) x = 0.100 m.

In Figures 10 (a), (b) and (c), are made a comparison of real parts of the fluid
response along the entire plate for all measurement points.

In view of the results presented here, the capability of the DtN Method to predict
the coupled vibro-acoustic operational modes is quite satisfactory.
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(a) (b)

Figura 8: FRF Comparison. (a) x = 0.174 m (b) x = 0.274 m.
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Figura 9: FRF Comparison. (a) x = 0.523 m (b) x = 0.672 m.

6. CONCLUSIONS

A method for the computation of frequency response function and operational modes
of coupled unbounded vibro-acoustic systems is described. The application to free-free
plate in infinite air medium, with experimental verification of computed results has demon-
strated its efficiency.

The results obtained with DtN Method, used with FEM, showed satisfactory accor-
dance with the measurement results for the example presented.
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Paulo FAPESP, for their financial support.



Experimental        
Mapeamento DtN      

Experimental        
Mapeamento DtN      

Experimental        
Mapeamento DtN      

(a) (b) (c)

Figura 10: Pressure Modes Comparison. (a) First Mode (b) Second Mode (c) Third
Mode.
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